Physik im Studienkolleg

Physik-Praktikum

Dr.-Ing. Klaus Neemann

Formelsammlung zum Physik-Praktikum

Größen und Einheiten

■ Physikalische Größe:

$$G = \{G\} \cdot [G]$$
 , G – Größe , $\{G\}$ – Zahlenwert , $[G]$ – Einheit

■ Einheitenvorsätze:

Name	Giga	Mega	Kilo	Zenti	Milli	Mikro	Nano	Pico
Zeichen	G	М	k	С	m	μ	n	р
Wert	10 ⁺⁹	10 ⁺⁶	10 ⁺³	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

Dimensionsanalyse

■ Einflussfunktion (mit Einheiten):

$$Y = \mathcal{F}(X_1, X_2, \dots, X_N)$$
 , X_n – Einflussgrößen , Y – abhängige Größe

■ Kennzahlenfunktion (ohne Einheiten/dimensionslos):

$$A=\mathcal{K}(\Pi_1,\Pi_2,\ldots,\Pi_P)$$
 , Π_p – Parameter , A – abhängige Kennzahl

 Π_p – dimensionslose Potenzprodukte von X_1, X_2, \ldots, X_N

A – dimensionsloses Potenzprodukt von Y, X_1 , X_2 , ..., X_N

■ Pi-Theorem:

Anzahl der Einflussgrößen:

Anzahl der natürlichen Basiseinheiten: M

(nach Elimination der SI-Basiseinheiten)

 \Rightarrow Anzahl der dimensionslosen Parameter: P = N - M

■ Beispiel: Luftwiderstand einer Kugel

$$F = \mathcal{F}(d, v, \rho, \nu)$$
, $[F] = \text{kg m s}^{-2}$, $[d] = \text{m}$, $[v] = \text{m s}^{-1}$, $[\rho] = \text{kg m}^{-3}$, $[\nu] = \text{m}^2 \text{s}^{-1}$
 $N = 4$, $M = 3$ \Rightarrow $P = 1$ \Rightarrow $A = \frac{F}{\rho d^2 v^2}$, $\Pi_1 = \frac{\nu}{v d}$ \Rightarrow $\frac{F}{\rho d^2 v^2} = \mathcal{K}\left(\frac{\nu}{v d}\right)$

1

Ν

Messabweichungen

■ Wahrer Wert:

$$X = X_M \pm \Delta X$$
 , X_M – Messwert , ΔX – absolute Abweichung

■ Relative Abweichung:

$$\delta X = \Delta X/X_M$$

Fehlerfortpflanzung

■ Allgemeines Fehlerfortpflanzungsgesetz für die maximale absolute Abweichung:

$$Z = \mathcal{F}(X, Y)$$
, $\Delta Z = \left| \frac{\partial \mathcal{F}}{\partial X} \right|_{\substack{X = X_M \ Y = Y_M}} \cdot \Delta X + \left| \frac{\partial \mathcal{F}}{\partial Y} \right|_{\substack{X = X_M \ Y = Y_M}} \cdot \Delta Y$

Addition und Subtraktion:

$$Z = X + Y$$
 oder $Z = X - Y$

 \Rightarrow Addition der absoluten Abweichungen: $\Delta Z = \Delta X + \Delta Y$

Multiplikation und Division:

$$Z = X \cdot Y$$
 oder $Z = X/Y$

 \Rightarrow Addition der relativen Abweichungen: $\delta Z = \delta X + \delta Y$

■ Potenz
$$Z = X^n$$
: $\delta Z = |n| \delta X$

■ Allgemeines Fehlerfortpflanzungsgesetz für die wahrscheinliche absolute Abweichung:

$$Z = \mathcal{F}(X, Y)$$
, $\Delta Z = \sqrt{\left(\frac{\partial \mathcal{F}}{\partial X}\Big|_{\substack{X = X_M \ Y = Y_M}}\right)^2 \cdot (\Delta X)^2 + \left(\frac{\partial \mathcal{F}}{\partial Y}\Big|_{\substack{X = X_M \ Y = Y_M}}\right)^2 \cdot (\Delta Y)^2}$

Statistische Größen

■ Mittelwert von N Messwerten X_n :

$$\overline{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$$

■ Standardabweichung von N Messwerten X_n :

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (X_n - \overline{X})^2}$$

oder

$$\sigma = \sqrt{\frac{1}{N-1} \left(\sum_{n=1}^{N} (X_n)^2 - N(\overline{X})^2 \right)}$$

• Wahrscheinliche Abweichung des Mittelwertes \overline{X} :

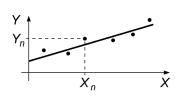
$$\Delta \overline{X} = \sigma / \sqrt{N}$$

■ Regressionsgerade Y = aX + b durch N Messpunkte (X_n, Y_n) :

$$a = \left(\sum_{n=1}^{N} X_n Y_n - N \overline{X} \overline{Y}\right) / \left(\sum_{n=1}^{N} X_n^2 - N \overline{X}^2\right)$$

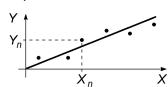
$$\overline{X} = \frac{1}{N} \sum_{n=1}^{N} X_n , \quad \overline{Y} = \frac{1}{N} \sum_{n=1}^{N} Y_n$$

$$b = \overline{Y} - a \overline{X}$$



■ Regressionsgerade Y = aX durch (0,0) und N Messpunkte (X_n, Y_n):

$$a = \left(\sum_{n=1}^{N} X_n Y_n\right) / \left(\sum_{n=1}^{N} X_n^2\right)$$



Logarithmische Darstellungen

Exponential- und Logarithmusfunktionen (x > 0, a > 0):

$$y = \log_a(x) \Leftrightarrow x = a^y$$

■ Besondere Logarithmusfunktionen:

Dekadischer Logarithmus: $\lg(x) = \log_{10}(x)$ (auf dem Taschenrechner $\lg = \log$)

Natürlicher Logarithmus: $ln(x) = log_e(x)$

■ Rechnen mit Logarithmen (log – beliebige Logarithmusfunktion):

$$log(1) = 0$$

$$\log(x \cdot z) = \log(x) + \log(z)$$

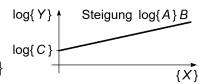
$$\log(x/z) = \log(x) - \log(z)$$

$$\log(x^m) = m \cdot \log(x)$$

■ Exponentialfunktion zwischen physikalischen Größen in einfach-logarithmischer Darstellung:

$$Y = C A^{BX}$$
 \Rightarrow $\log\{Y\} = \log\{A\} B \cdot \{X\} + \log\{C\}$

Gerade mit Steigung $log{A} B$ und Achsenabschnitt $log{C}$



Potenzfunktion zwischen physikalischen Größen in doppelt-logarithmischer Darstellung:

$$Y = C X^m \Rightarrow \log\{Y\} = m \cdot \log\{X\} + \log\{C\}$$

Gerade mit Steigung m und Achsenabschnitt $\log\{C\}$

