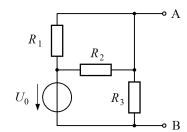
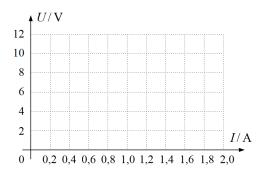

Aufgabe 2: Gleichstromkreise

Aufgabe 2.1

Das Netzwerk aus der nebenstehenden Abbildung besteht aus drei Batterien mit den Quellenspannungen U_{q1} , U_{q3} , U_{q4} und fünf Verbrauchern mit den Widerständen R_1 , R_2 , R_4 , R_5 , R_6 .

a) Schreiben Sie mit Hilfe der Kirchhoffschen Gesetze und des Ohmsches Gesetzes ein vollständiges Gleichungssystem zur Berechnung der Stromstärken I_1 , I_2 , I_3 , I_4 , I_5 , I_6 auf.


Hinweis: Schreiben Sie nur die Gleichungen auf, berechnen Sie noch nicht die Lösung!


b) Der variable Widerstand wird auf $R_5=0\,\Omega$ eingestellt; für die übrigen Widerstände und die Quellspannungen gilt: $R_1=R_2=R_4=R_6=10\,\Omega$, $U_{q1}=U_{q3}=U_{q4}=3\,\mathrm{V}$. Berechnen Sie die Stromstärken $I_1,\,I_2,\,I_3,\,I_4,\,I_5,\,I_6$.

Aufgabe 2.2

Die nebenstehend skizzierte Schaltung mit einer idealen Spannungsquelle (Quellenspannung $U_0=12\,\mathrm{V}$) und drei Widerständen $(R_1=10\,\Omega\,,\,R_2=20\,\Omega\,,\,R_3=30\,\Omega)$ wirkt bezüglich der Anschlussklemmen A und B wie eine reale Spannungsquelle.

- a) Bestimmen Sie für diese reale Spannungsquelle
 - \bullet die Leerlaufspannung U_L ,
 - den Innenwiderstand R_i ,
 - den Kurzschlussstrom I_K .
- b) An die Klemmen A und B wird ein Verbraucher mit dem Widerstand $R_a=5\,\Omega$ angeschlossen. Bestimmen Sie grafisch, d.h. durch Zeichnen von Verbraucher- und Erzeugerkennlinie, die Stromstärke I_a und die Spannung U_a am Verbraucher.

