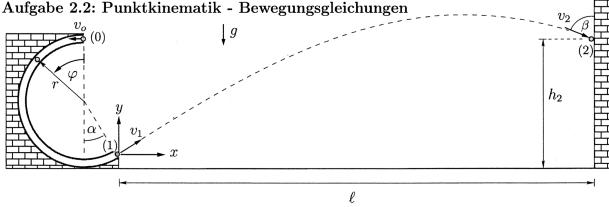

Aufgabe 2: Kinematik

Aufgabe 2.1: Starrkörperkinematik

Ein Rad vom Radius r bewegt sich rein rollend mit der konstanten (Schwerpunkts-)Geschwindigkeit v_s auf einer horizontalen Ebene. Im Mittelpunkt S ist eine Stange der Länge a gelenkig angebracht, deren linker Endpunkt A an einer Wand vertikal nach unten gleitet. Die Bewegung beginnt zur Zeit t=0s aus der gestrichelten Lage.

- (a) Ermitteln Sie die Schwerpunktskoordinate x_s als Funktion der Zeit t und geben Sie die Winkelgeschwindigkeit ω_2 des Rades an. (2 Punkte)
- (b) Berechnen Sie die Geschwindigkeit des Stangenendpunktes A mit Hilfe des Gesetzes der $Starr-k\"{o}rperbewegung$. Geben Sie anschließend die Winkelgeschwindigkeit $\dot{\varphi}$ der Stange als Funktion des Winkels φ an, indem Sie die Tatsache ausnutzen, dass sich der Stangenendpunkt A nur in die vertikale Richtung bewegen kann. (4 Punkte)


(c) Wie groß ist die Winkelgeschwindigkeit der Stange bei einem Winkel von $\varphi = 30\,^{\circ}$?

Nach welcher Zeit T erreicht die Stange ihre horizontale Lage und wie groß ist in diesem Moment ihre Winkelgeschwindigkeit?

Zeichnen Sie den Momentanpol (M) der Stange in der gezeigten Lage in nebenstehende Abbildung ein.

(4 Punkte)

Gegeben: $a, r, v_s = \text{const.}$

Eine kleine Kugel (Massenpunkt) hat im Punkt (0) die (unbekannte) Anfangsgeschwindigkeit v_o und wird mit konstanter Winkelbeschleunigung ε auf einer kreisförmigen Bahn vom Radius r beschleunigt. Im Punkt (1) verlässt sie die Kreisbahn mit der gegebenen Geschwindigkeit v_1 und bewegt sich anschließend im Schwerefeld. Im Punkt (2) trifft die Kugel auf eine Wand.

- (a) Geben Sie die Bewegungsgleichungen für die Kugel auf der Kreisbahn an und berechnen Sie die Anfangsgeschwindigkeit v_o der Kugel im Punkt (0). Wie groß ist die Normalbeschleunigung der Kugel kurz vor dem Verlassen im Punkt (1)? (4 Punkte)
- (b) Geben Sie die Bewegungsgleichungen für den schiefen Wurf von (1) nach (2) im gegebenen Koordinatensystem an und ermitteln Sie die Höhe h_2 , in der die Kugel die Wand trifft. (4 Punkte)

(c) Mit welcher Geschwindigkeit v_2 und unter welchem Winkel β trifft die Kugel im Punkt (2) auf die Wand? (3 **Punkte**)

Gegeben: $\alpha = 30^{\circ}$; r = 3 m; $\ell = 40 \text{ m}$; $v_1 = 25 \frac{\text{m}}{\text{s}}$; $\varepsilon = \frac{75}{7\pi} \frac{1}{\text{s}^2}$; $g = 10 \frac{\text{m}}{\text{s}^2}$