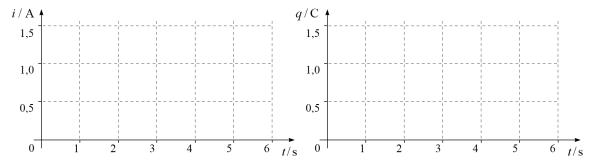

Aufgabe 3: Schaltvorgänge, Wechselstrom

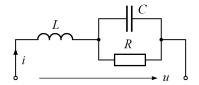
Aufgabe 3.1

Zwei Verbraucher mit dem gleichen Widerstand $R=20\,\Omega$ und ein Kondensator mit der Kapazität $C=0,05\,\mathrm{F}$ sind wie in der nebenstehenden Abbildung über einen Schalter verbunden und an eine Batterie mit der Quellenspannung $U_q=30\,\mathrm{V}$ angeschlossen. Am Anfang befindet sich der Schalter in der Position 0, der Kondensator ist ungeladen.

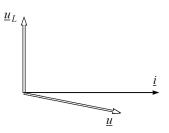


Zur Zeit $t_0 = 0$ s wird der Schalter in die Position 1 gedreht.

- a) Bestimmen Sie die Stromstärke $i_0 = i(t_0)$, die zur Zeit $t_0 = 0$ s aus der Batterie fließt, sowie die Ladungsmenge $q_{\infty} = \lim_{t \to \infty} q(t)$, die nach langer Zeit im Kondensator gespeichert ist.
- b) Bestimmen Sie die Zeit t_1 , nach der der Kondensator zu 75% geladen ist, und bestimmen Sie die Stromstärke $i_1 = i(t_1)$, die zu dieser Zeit aus der Batterie fließt.


Zur Zeit t_1 wird der Schalter in die Position 2 gedreht.

- c) Bestimmen Sie für die Zeit $t_2 = 5$ s die Stromstärke $i_2 = i(t_2)$, die aus der Batterie fließt, sowie die Ladungsmenge $q_2 = q(t_2)$ des Kondensators.
- d) Skizzieren Sie in den nachfolgenden Diagrammen die Zeitverläufe von Stromstärke i(t) und Ladungsmenge q(t).



Aufgabe 3.2

Ein Ohmscher Widerstand $R=500\,\Omega$, eine Induktivität $L=1,0\,\mathrm{H}$ und eine Kapazität $C=10\,\mu\mathrm{F}$ sind entsprechend der nebenstehenden Abbildung zusammengeschaltet und werden von einem Wechselstrom mit der Amplitude $\hat{\imath}=0,1\,\mathrm{A}$, der Kreisfrequenz $\omega=200\,\mathrm{s}^{-1}$ und dem Nullphasenwinkel $\varphi_0=0^\circ$ durchflossen.

- a) Bestimmen Sie die Impedanz \underline{Z} der Schaltung, die Amplitude \widehat{u} der Spannung sowie den Phasenverschiebungswinkel $\Delta \varphi$ zwischen Spannung und Stromstärke.
- b) Die nebenstehende Abbildung enthält eine qualitative Darstellung der Zeiger für i, u und u_L . Ergänzen Sie in der Abbildung die Zeiger für i_C , i_R und u_{RC} .

